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Development of a pair potential for Fe–He by lattice inversion
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A new pair potential for helium in bulk iron was developed using a method based on the Chen–Möbius
lattice inversion in order to study the effect of He in irradiated iron. By means of molecular dynamic
(MD), we have examined this interatomic potential. Comparing with the ab initio calculation results,
the stability of He-vacancy clusters at zero temperature and migration energy was well reproduced by
this potential.

� 2010 Elsevier B.V. All rights reserved.
1. Introduction

Ferritic steels are possible structural materials for future fusion
reactors, materials are subjected to 14 MeV neutron irradiation,
generating helium by transmutation reactions and simultaneously
energetic displacement damage. Helium plays a significant role in
microstructural evolution and mechanical properties degradation
[1,2]. However, many important effects of helium are not easily
available for experimental study due to helium’s high mobility
via an interstitial migration mechanism and its strong binding with
vacancies. Although these properties could be obtained from ab ini-
tio calculation, it is very costly for large-scale simulation, especially
for the systems containing more than hundreds of atoms. Applying
ab initio data to construct an empirical potential for use in classical
molecular dynamics seems to be the most practical approach cur-
rently available to study He behavior in metals on the desired scale
[3]. It has been suggested that a pair potentials is enough to de-
scribe simple He defects and migration of He in iron, since helium
is a close-shell atom [4,5]. As a pair potential is computationally
faster than a many-body potential, it is advisable to use a pair po-
tential when it is sufficient.

In most of the previous work [3–5], the interatomic potentials
were started from the selection of interatomic potential function
forms with adjustable parameters, and then the potential parame-
ters were obtained by fitting to the experimental data or calcula-
tion results, such as lattice parameters, lattice energy, phonon
frequencies, and elastic properties. These potentials have played
a significant role in previous simulation, especially for the materi-
als with lots of experimental data [6–8]. However, for the metal-He
interatomic potential whose properties are hard to obtain, it is
hard to determine which set of potentials is the most appropriate.
ll rights reserved.
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One of the effective solutions for the uncertainty of multiple-
parameter fittings may be the lattice inversion method, which
was first presented to determine the pair potentials from the ab
initio calculated or experimentally measured adhesive energy by
Carlsson, Gelatt, and Ehrenreich (CGE) [9], and then Chen used
the Möbius-inversion formula in number theory to obtain the pair
potentials for the pure metals with faster convergence than the
CGE method [10,11].

In this paper a method [12] based on the Chen–Möbius lattice
inversion was used to derive Fe–He interatomic potential. First,
we constructed the extended phase space including B1 (rocksalt)
and B3 structures (Fig. 1). The aim was to derive the proper
interatomic potentials from an extended phase space including
equilibrium and nonequilibrium states. This could cover more con-
figurations and interatomic spacing of our interest than that only
from one equilibrium configuration. Second, the pseudopotential
total-energy calculations for two-type FeHe crystals were per-
formed from lattice constant a = 0.4 � 0.86 nm. Finally, the pair po-
tential curves were directly evaluated from a series of the total-
energy difference based on Chen–Möbius lattice inversion tech-
niques [10,11]. Then the suitable function forms were selected to
fit the pair potential curves. Furthermore, the inverted pair poten-
tial was used to describe the formation and migration of He in iron.
2. Computational models

2.1. Total-energy calculation for B1-, B3-type FeHe

According to lattice inversion [10,11], in order to extract the Fe–
He pair potential, we calculated the pseudopotential total-energy
of FeHe in the B1 and B3 structures with lattice constants a from
0.4 to 0.86 nm. These calculations were performed using the Vien-
na ab initio simulation package (VASP) [13–15]. Exchange and cor-
relation are treated in the GGA with the function of Perdew and
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(a) (b)

Fig. 1. Virtual structures used for ab initio pseudopotential total-energy calcula-
tions. (a) B1 (rocksalt) structure and (b) B3 (zinc blende) structure.
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Wang (PW91) [16]. The K-mesh points over the Brillouin Zone are
generated with parameters 7 � 7 � 7 for the largest reciprocal
space and 3 � 3 � 3 for the smallest reciprocal space by the Monk-
horst–Pack scheme [17]. The energy tolerance for self-consistent-
field (SCF) convergence is 10�5 eV/atom with the plane ware en-
ergy cutoff of 550 eV. The total energies as a function of lattice con-
stant a are shown in Fig. 2.

2.2. Chen–Möbius lattice inversion

With the identical lattice constant a, the difference between B1
and B3 structures is only about the Fe–He distance. Then the total-
energy difference EB1 � EB3 between B1 and B3 only depends on
the Fe–He interaction, and can be rewritten as:

EB1 � EB3 ¼
1
2
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where /FeHe is the Fe–He pair potential and rij is the separation be-
tween atoms at lattice site i and j (i – j). For the B1-type FeHe, the
Fe–He interaction can be expressed as
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where the i, j, k indicate the atomic sites of atoms in the unit of the
lattice constant a. In the B3-FeHe, the Fe–He interaction is
Fig. 2. Total energy versus lattice constant a of the FeHe polymorph from the VASP
calculation.
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Then /FeHe can be solved from Eqs. (1)–(3) by Chen–Möbius lattice
inversion [10,11]. The pair potential was fit using a polynomial
function:
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The final potential parameters are listed in Table 1.
Fig. 3 also shows the discrepancy among our pair potential, Wil-

son’s potential [4], Seletskaia’s potential [20] and Juslin’s potential
[5]. Their discrepancy lies mainly in the part of small interatomic
distances, where the repulsive wall is stiffer for the Wilson’s poten-
tial in comparison to the Juslin’s and our potential.

3. Results and discussion

Using the above Fe–He pair potential from multiple-lattice
inversion, we calculated the elastic properties of the two FeHe
crystals. The first important information we can deduce from the
results is the Cauchy pressure, which provides a test of the pair-
wise hypothesis. To describe the Fe–Fe interactions, the potential
developed by Ackland et al. [18] are employed, which is generally
considered to be good at describing defects and radiation damage.
The He–He interactions are described using the Aziz potential [19].
The obtained Cij values are given in Table 2. The Cauchy pressures
calculated with the new potential for Fe–He and a many-body po-
tential for Fe–Fe agree with DFT results. Therefore, the three-body
forces for Fe–He are most likely to be very small because that He is
a closed-shell atom.

The formation energies of helium interstitials in iron for substi-
tutional, octahedral and tetrahedral positions was calculated using
the classical molecular statics (MS) technique. All simulations were
performed for 2000 atoms in pure bulk, adding and removing
atoms at needed for the defects. The time step was 2 � 10�16 s
and rcutoff = 1 nm. The result are presented in Table 3. In Table 3
one can see that our potential reproduces the preference order
for a single He defect. Comparing with the potential by Juslin
et al. [5] and Seletskaia et al. [20], the formation energies of our po-
tential are closer to DFT results.

The new Fe–He potential was then used to study the properties
of He-vacancy clusters at 0 K. The dependence of the binding en-
ergy of additional He atoms to a He-vacancy cluster (substitutional
He) were investigated as a function of cluster size. Firstly, helium
atoms were introduced randomly in the vicinity of a vacancy site.
The system was subsequently relaxed at 700 K for 10 ps, then
cooled down and quenched to 0 K. To ensure the cluster obtained
in this way is stable, several checks were made. That is, the orien-
tation of the stable cluster was rotated 30� and 60�, respectively,



Table 1
Fe–He pair potential parameters obtained in this work.

p11 (eV/nm10) p21 (eV/nm10) p31 (eV/nm10) p41 (eV/nm10) p51 (eV/nm10)
1.143E20 3.841E15 1.497E12 6.401E8 1.955E3
p12 (eV/nm9) p22 (eV/nm9) p32 (eV/nm9) p42 (eV/nm9) p52 (eV/nm9)
�4.861E19 �3.521E15 �2.545E12 �1.728E9 �1.294E4
p13 (eV/nm8) p23 (eV/nm8) p33 (eV/nm8) p43 (eV/nm8) p53 (eV/nm8)
9.189E18 1.458E15 1.949E12 2.099E9 3.833E4
p14 (eV/nm7) p24 (eV/nm7) p34 (eV/nm7) p44 (eV/nm7) p54 (eV/nm7)
�1.017E18 �3.595E14 �8.857E11 �1.510E9 �6.699E4
p15 (eV/nm6) p25 (eV/nm6) p35 (eV/nm6) p45 (eV/nm6) p55 (eV/nm6)
7.312E16 5.859E13 2.649E11 7.126E8 7.649E4
p16 (eV/nm5) p26 (eV/nm5) p36 (eV/nm5) p46 (eV/nm5) p56 (eV/nm5)
�3.573E15 �6.612E12 �5.453E10 �2.304E8 �5.968E4
p17 (eV/nm4) p27 (eV/nm4) p37 (eV/nm4) p47 (eV/nm4) p57 (eV/nm4)
1.208E14 5.250E11 7.836E9 5.168E7 3.224E4
p18 (eV/nm3) p28 (eV/nm3) p38 (eV/nm3) p48 (eV/nm3) p58 (eV/nm3)
�2.807E12 �2.911E10 �7.776E8 �7.933E6 �1.192E4
p19 (eV/nm2) p29 (eV/nm2) p39 (eV/nm2) p49 (eV/nm2) p59 (eV/nm2)
4.354E10 1.085E9 5.110E7 7.970E5 2.886E3
p110 (eV/nm) p210 (eV/nm) p310 (eV/nm) p410 (eV/nm) p510 (eV/nm)
�4.166E8 �2.480E7 �2.013E6 �3.730E4 �4.138E2
p111 (eV) p211 (eV) p311 (eV) p411 (eV) p511 (eV)
1.951E6 2.670E5 3.621E4 1.260E3 2.670E1

Fig. 3. Our potential, Wilson’s potential [4], Seletskaia’s potential [20] and Juslin’s
potential [5] as a function of interatomic distance.

Table 2
Calculated values for elastic constant (Cij in GPa), bluk modulus (B in GPa), and Cauchy
pressure (C0 in GPa).

B1 B C11 C12 C44 C0

DFT 95 146 70 25 22.5
MD 110 181 75 27 24

B3 B C11 C12 C44 C0

DFT 12 16 10 �26 18
MD 21 25 20 �21 20.5

Table 3
Formation energies (eV) of helium interstitials in iron for substitutional, octahedral
and tetrahedral positions.

Substitutional Octahedral Tetrahedral

DFT Seletskaia et al. [21] 3.84 4.60 4.37
MD Wilson [22] 3.25 5.25 5.34
MD Juslin et al. [5] 4.10 4.51 4.39
MD Seletskaia et al. [20] 3.91 4.54 4.50

This work 3.87 4.57 4.45
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and then was processed by the quenched annealing. We find that
the formation energies of the rotated clusters have almost no dif-
ference from the original stable cluster. The atomic coordinates
were relaxed using a conjugate-gradient method to zero force at
constant volume. The results for He atom are presented in Fig. 4.
The new potential somewhat underestimates the binding energies
of additional He atoms to the He-vacancy cluster. The binding en-
ergy initially decreases and then increases, with a local maximum
when a total of six He atoms are involved. In this case, the cluster
have relative high symmetry, e.g. He6V1 (one Fe atoms out and put
six He in) is octahedron. Their formation energy per atom is rela-
tively low. Thus it is difficult to deprive a He atom from the low-
energy cluster to break the high symmetry. However, it becomes
very easy to remove an additional He atom from a high-energy
cluster to obtain the stable configuration with high symmetry.
When the seventh He atoms is added to the He-vacancy cluster,
it is ejected to an interstitial position. This leads to the decrease
in binding energy when the seventh He atom is added [3].

Concerning the kinetics of He in bcc iron, we examine the case
of interstitial He migration, which is relevant to the initial stage
after He implantation or He production by transmutation. There
are two most common methods to calculate the migration barrier,
the nudged elastic band method [23] and the drag method [24].
Fig. 4. Binding energy of additional He atoms to a substitutional He.



Fig. 5. The migration barrier for migration of helium in iron from one tetrahedral
interstitial position to a neighboring tetrahedral position.
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As the drag method was used in the DFT calculations [22], we
calculated the migration of a tetrahedral interstitial He to a neigh-
boring tetrahedral position using the drag method. The results
agree well with the DFT results, as can be seen in Fig. 5. Based
on a comparison with the DFT simulation of He migration [22],
the new potential accurately describes He interstitial migration.
A very low migration energy, Em (Heint) = 0.065 eV, is found here
for He with this three-dimensional mechanism, Such a low migra-
tion energy means that the migration of interstitial He is almost
athermal.

Although there have been many interatomic potentials for
Fe–He [4,5,20], the scheme in this work has features as followers.
Our interatomic pair potential cover much larger phase space
including not only the B1 phase, but also B3 structures. Second,
the potential was derived directly from the total-energy difference
between B1- and B3-type FeHe crystals, The potential functions
could be selected in terms of the shapes of the inverted potential
curves.

4. Conclusions

In this paper, we carried out density functional theory (DFT)
based first principle calculations, using the projected augmented
plane-wave (PAW) method in order to determine the total energies
of two type FeHe crystals. The pair potentials for Fe–He was de-
rived from total energies with multiple-lattice inversion tech-
niques. Based on the potentials, we have applied MD method to
examine this pair potential. Comparing with the ab initio calcula-
tion results, the stability of He-vacancy clusters at zero tempera-
ture and migration energy was well reproduced by this potential,
indicating that the multiple-lattice inversion technique is useful
and applicable to estimate the Metal-He potentials.
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